Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Microb Genom ; 9(4)2023 04.
Article in English | MEDLINE | ID: covidwho-20244618

ABSTRACT

High-throughput bacterial genomic sequencing and subsequent analyses can produce large volumes of high-quality data rapidly. Advances in sequencing technology, with commensurate developments in bioinformatics, have increased the speed and efficiency with which it is possible to apply genomics to outbreak analysis and broader public health surveillance. This approach has been focused on targeted pathogenic taxa, such as Mycobacteria, and diseases corresponding to different modes of transmission, including food-and-water-borne diseases (FWDs) and sexually transmitted infections (STIs). In addition, major healthcare-associated pathogens such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci and carbapenemase-producing Klebsiella pneumoniae are the focus of research projects and initiatives to understand transmission dynamics and temporal trends on both local and global scales. Here, we discuss current and future public health priorities relating to genome-based surveillance of major healthcare-associated pathogens. We highlight the specific challenges for the surveillance of healthcare-associated infections (HAIs), and how recent technical advances might be deployed most effectively to mitigate the increasing public health burden they cause.


Subject(s)
Cross Infection , Methicillin-Resistant Staphylococcus aureus , Vancomycin-Resistant Enterococci , Humans , Hospitals , Cross Infection/epidemiology , Cross Infection/microbiology , Klebsiella pneumoniae
2.
Microorganisms ; 11(5)2023 May 16.
Article in English | MEDLINE | ID: covidwho-20239725

ABSTRACT

Antibiotic resistance is one of the greatest growing public health threats and a worldwide priority. According to the WHO, drug-resistant diseases may cause 10 million deaths a year by 2050 and have a substantial impact on the global economy, driving up to 24 million people into poverty. The ongoing COVID-19 pandemic has exposed the fallacies and vulnerability of healthcare systems worldwide, displacing resources from existing programs and reducing funding for antimicrobial resistance (AMR) fighting efforts. Moreover, as already seen for other respiratory viruses, such as flu, COVID-19 is often associated with superinfections, prolonged hospital stays, and increased ICU admissions, further aggravating healthcare disruption. These events are accompanied by widespread antibiotic use, misuse, and inappropriate compliance with standard procedures with a potential long-term impact on AMR. Still, COVID-19-related measures such as increasing personal and environmental hygiene, social distancing, and decreasing hospital admissions could theoretically help the AMR cause. However, several reports have shown increased antimicrobial resistance during the COVID-19 pandemic. This narrative review focuses on this "twindemic", assessing the current knowledge of antimicrobial resistance in the COVID-19 era with a focus on bloodstream infections and provides insights into the lessons learned in the COVID-19 field that could be applied to antimicrobial stewardship initiatives.

3.
Commun Dis Intell (2018) ; 462022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2116618

ABSTRACT

Abstract: From 1 January to 31 December 2021, forty-eight institutions around Australia participated in the Australian Enterococcal Surveillance Outcome Programme (AESOP). The aim of AESOP 2021 was to determine the proportion of enterococcal bacteraemia isolates in Australia that were antimicrobial resistant, and to characterise the molecular epidemiology of the Enterococcus faecium isolates. Of the 1,297 unique episodes of enterococcal bacteraemia investigated, 94.4% were caused by either E. faecalis (54.1%) or E. faecium (40.3%). Ampicillin resistance was detected in one E. faecalis isolate and in 89.3% of E. faecium isolates. Vancomycin non-susceptibility was not detected in E. faecalis but was detected in 37.9% of E. faecium. Overall, 39.6% of E. faecium harboured the vanA and/or vanB genes. For the vanA/vanB positive E. faecium isolates, 35.8% harboured the vanA gene and 64.2% the vanB gene. Although the percentage of vancomycin-resistant E. faecium bacteraemia isolates was significantly lower than that reported in the 2020 AESOP report (presumably due to the COVID-19 elective surgery restrictions placed on hospitals), it remains substantially higher than that recorded in most European countries. Isolates of E. faecium consisted of 73 multi-locus sequence types (STs); 77.2% of isolates were classified into seven major STs each containing more than ten isolates. All major STs belonged to clonal cluster (CC) 17, a major hospital-adapted polyclonal E. faecium cluster. The major STs (ST17, ST1424, ST796, ST78, ST80, ST1421 and ST555) were found across most regions of Australia. The predominant ST was ST17 which was identified in all regions except the Northern Territory. Overall, 46.5% of isolates belonging to the seven major STs harboured the vanA or vanB gene. The AESOP 2021 has shown that enterococcal bacteraemia episodes in Australia are frequently caused by polyclonal ampicillin-resistant high-level gentamicin resistant vanA- or vanB-positive E. faecium which have limited treatment options.


Subject(s)
Bacteremia , COVID-19 , Gram-Positive Bacterial Infections , Humans , Anti-Bacterial Agents/pharmacology , Agar , Gram-Positive Bacterial Infections/epidemiology , Vancomycin , Microbial Sensitivity Tests , Drug Resistance, Bacterial , Enterococcus/genetics , Bacteremia/epidemiology , Northern Territory
4.
Transpl Infect Dis ; : e13972, 2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2108166

ABSTRACT

INTRODUCTION: Many institutions suspended surveillance and contact precautions for multidrug-resistant organisms (MDROs) at the outset of the coronavirus disease 2019 (COVID-19) pandemic due to a lack of resources. Once our institution reinstated surveillance in September 2020, a vancomycin-resistant Enterococcus (VRE) faecium outbreak was detected in the cardiothoracic transplant units, a population in which we had not previously detected outbreaks. METHODS: An outbreak investigation was conducted using pulsed-field gel electrophoresis for strain typing and electronic medical record review to determine the clinical characteristics of involved patients. The infection prevention (IP) team convened a multidisciplinary process improvement team comprised of IP, cardiothoracic transplant nursing and medical leadership, environmental services, and the microbiology laboratory. RESULTS: Between December 2020 and March 2021, the outbreak involved thirteen patients in the cardiothoracic transplant units, four index cases, and nine transmissions. Of the 13, seven (54%) were on the transplant service, including heart and lung transplant recipients, patients with ventricular assist devices, and a patient on extracorporeal membrane oxygenation as a bridge to lung transplantation. Four of 13 (31%) developed a clinical infection. DISCUSSION: Cardiothoracic surgery/transplant patients may have a similar risk for VRE-associated morbidity as abdominal solid organ transplant and stem cell transplant patients, highlighting the need for aggressive outbreak management when VRE transmission is detected. Our experience demonstrates an unintended consequence of discontinuing MDRO surveillance in this population and highlights a need for education, monitoring, and reinforcement of foundational infection prevention measures to ensure optimal outcomes.

5.
Molecules ; 27(19)2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-2066284

ABSTRACT

Three unique 5,6-seco-hexahydrodibenzopyrans (seco-HHDBP) machaeridiols A-C, reported previously from Machaerium Pers., have displayed potent activities against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium, and E. faecalis (VRE). In order to enrich the pipeline of natural product-derived antimicrobial compounds, a series of novel machaeridiol-based analogs (1-17) were prepared by coupling stemofuran, pinosylvin, and resveratrol legends with monoterpene units R-(-)-α-phellandrene, (-)-p-mentha-2,8-diene-1-ol, and geraniol, and their inhibitory activities were profiled against MRSA ATCC 1708, VRE ATCC 700221, and cancer signaling pathways. Compounds 5 and 11 showed strong in vitro activities with MIC values of 2.5 µg/mL and 1.25 µg/mL against MRSA, respectively, and 2.50 µg/mL against VRE, while geranyl analog 14 was found to be moderately active (MIC 5 µg/mL). The reduction of the double bonds of the monoterpene unit of compound 5 resulted in 17, which had the same antibacterial potency (MIC 1.25 µg/mL and 2.50 µg/mL) as its parent, 5. Furthermore, a combination study between seco-HHDBP 17 and HHDBP machaeriol C displayed a synergistic effect with a fractional inhibitory concentrations (FIC) value of 0.5 against MRSA, showing a four-fold decrease in the MIC values of both 17 and machaeriol C, while no such effect was observed between vancomycin and 17. Compounds 11 and 17 were further tested in vivo against nosocomial MRSA at a single intranasal dose of 30 mg/kg in a murine model, and both compounds were not efficacious under these conditions. Finally, compounds 1-17 were profiled against a panel of luciferase genes that assessed the activity of complex cancer-related signaling pathways (i.e., transcription factors) using T98G glioblastoma multiforme cells. Among the compounds tested, the geranyl-substituted analog 14 exhibited strong inhibition against several signaling pathways, notably Smad, Myc, and Notch, with IC50 values of 2.17 µM, 1.86 µM, and 2.15 µM, respectively. In contrast, the anti-MRSA actives 5 and 17 were found to be inactive (IC50 > 20 µM) across the panel of these cancer-signaling pathways.


Subject(s)
Anti-Infective Agents , Biological Products , Methicillin-Resistant Staphylococcus aureus , Neoplasms , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Biological Products/pharmacology , Luciferases , Mice , Microbial Sensitivity Tests , Monoterpenes/pharmacology , Resveratrol/pharmacology , Signal Transduction , Transcription Factors , Vancomycin/pharmacology
6.
Am J Infect Control ; 50(10): 1145-1149, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2035665

ABSTRACT

BACKGROUND: Rectal swabs are well-implemented screening tools for multidrug-resistant bacteria (MDRB). Since certified swabs such as the Copan eSwab system experienced a delivery bottleneck during the COVID-19 pandemic, commercially available alternatives such as commonly used double-tipped cotton swabs had to be investigated, especially considering their similarity to professional cotton swabs for microbiological purposes. METHODS: Diagnostic properties of commercial cotton swabs (comparable to Q-tips) and Copan eSwabs were qualitatively compared in a prospective single-center study using microbiological standard cultures and PCR methods for the detection of multidrug-resistant Gram-negative bacteria and vancomycin-resistant enterococci (VRE). RESULTS: A total of 196 swab pairs were collected from 164 participants. MDRB were detected in 36 of 164 cases (22%). There were neither false-negative nor false-positive results using commercial cotton swabs. In 8 of 196 samples (4.1%) MDRB species were detected only by using cotton swabs, including vancomycin-resistant Enterococcus faecium, OXA-48 producing Escherichia coli, ESBL-producing Klebsiella pneumoniae and ESBL-producing Escherichia coli. DISCUSSION: Commercial cotton swabs turned out to be a reliable alternative to Copan eSwabs. For practical use as a screening tool, relevant storage- and manufacturer-related contamination must be ruled out beforehand. CONCLUSIONS: Commonly available double-tipped cotton swabs can be used for rectal MDRB screening in the event of supply shortages of certified swabs. Further studies should clarify their suitability as a sampling system for nasopharyngeal MRSA carriage or even for the molecular biological detection of SARS-CoV-2.


Subject(s)
COVID-19 , Vancomycin-Resistant Enterococci , COVID-19/diagnosis , Escherichia coli , Humans , Klebsiella pneumoniae , Pandemics , Prospective Studies , SARS-CoV-2 , Vancomycin
7.
Biomedicines ; 10(5)2022 May 12.
Article in English | MEDLINE | ID: covidwho-1855506

ABSTRACT

COVID-19 offers ideal premises for bacteria to develop antimicrobial resistance. In this study, we evaluated the presence of several antimicrobial resistance genes (ARG) in vancomycin-resistant Enterococcus (VRE) isolated from rectal swabs from patients at a hospital in Cluj-Napoca, Romania. Rectal swabs were cultivated on CHROMID® VRE (bioMérieux, Marcy-l' Étoile, France) and positive isolates were identified using MALDI-TOF Mass Spectrometry (Bruker Daltonics, Bremen, Germany) and further analyzed using the PCR technique for the presence of the following ARGs: van A, van B, tet(M), tet(L), ermB, msrA, mefA, aac(6')-Im, aph(2)-Ib, ant(4')-Ia, sul1, sul2, sul3, and NDM1. We isolated and identified 68 isolates of Enterococcus faecium and 11 isolates of Enterococcus faecalis. The molecular analysis showed 66 isolates positive for the vanA gene and eight positive for vanB. The most frequent association of ARG in VRE was vanA-tet(M)-ermB. There was no statistically significant difference between Enterococcus faecium and Enterococcus faecalis regarding ARGs. Our work proves that during the COVID-19 pandemic, highly resistant isolates of Enterococcus were present in patients in the intensive care unit; thus, better healthcare policies should be implemented for the management and control of these highly resistant isolates in the future.

8.
Commun Dis Intell (2018) ; 462022 Apr 26.
Article in English | MEDLINE | ID: covidwho-1812119

ABSTRACT

From 1 January to 31 December 2020, forty-nine institutions around Australia participated in the Australian Enterococcal Sepsis Outcome Programme (AESOP). The aims of AESOP 2020 were to determine the proportion of enterococcal bacteraemia isolates in Australia that were antimicrobial-resistant, and to characterise the molecular epidemiology of the E. faecium isolates. Of the 1,230 unique episodes of enterococcal bacteraemia investigated, 93.9% were caused by either E. faecalis (54.2%) or E. faecium (39.7%). Ampicillin resistance was not detected in E. faecalis but was detected in 88.2% of E. faecium . Vancomycin non-susceptibility was detected in 0.2% of E. faecalis and 32.6% of E. faecium . Overall, 35.2% of E. faecium harboured vanA and/or vanB genes. For the vanA/B positive E. faecium isolates, 38.8% harboured the vanA gene, 60.6% the vanB gene, and 0.6% harboured both vanA and vanB . Although the percentage of E. faecium bacteraemia isolates was significantly lower than that detected in the 2019 AESOP (presumably due to the COVID-19 elective surgery restrictions placed on hospitals), it remains substantially higher than that recorded in most European countries. The E. faecium isolates detected consisted of 71 multilocus sequence types (STs), with 81.7% of these isolates classified into eight major STs each containing ten or more isolates. All major STs belonged to clonal cluster 17 (CC17), a major hospital-adapted polyclonal E. faecium cluster. The major STs (ST17, ST1424, ST80, ST796, ST78, ST1421, ST555 and ST117) were found across most regions of Australia. The predominant clone was ST17, which was identified in all regions except the Northern Territory. Overall, 40.9% of isolates belonging to the eight major STs harboured the vanA or vanB gene. The AESOP 2020 has shown enterococcal bacteraemia episodes in Australia are frequently caused by polyclonal ampicillin-resistant high-level gentamicin-resistant vanA - or vanB -positive E. faecium which have limited treatment options.


Subject(s)
Bacteremia , COVID-19 , Gram-Positive Bacterial Infections , Sepsis , Agar , Anti-Bacterial Agents/pharmacology , Bacteremia/drug therapy , Bacteremia/epidemiology , Drug Resistance, Bacterial , Enterococcus/genetics , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/epidemiology , Humans , Northern Territory , Sepsis/drug therapy , Sepsis/epidemiology
9.
Front Public Health ; 10: 853757, 2022.
Article in English | MEDLINE | ID: covidwho-1776076

ABSTRACT

Background: The rising prevalence of multi-drug resistant organisms (MDROs), such as Methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococci (VRE), and Carbapenem-resistant Enterobacteriaceae (CRE), is an increasing concern in healthcare settings. Materials and Methods: Leveraging data from electronic healthcare records and a unique MDRO universal screening program, we developed a data-driven modeling framework to predict MRSA, VRE, and CRE colonization upon intensive care unit (ICU) admission, and identified the associated socio-demographic and clinical factors using logistic regression (LR), random forest (RF), and XGBoost algorithms. We performed threshold optimization for converting predicted probabilities into binary predictions and identified the cut-off maximizing the sum of sensitivity and specificity. Results: Four thousand six hundred seventy ICU admissions (3,958 patients) were examined. MDRO colonization rate was 17.59% (13.03% VRE, 1.45% CRE, and 7.47% MRSA). Our study achieved the following sensitivity and specificity values with the best performing models, respectively: 80% and 66% for VRE with LR, 73% and 77% for CRE with XGBoost, 76% and 59% for MRSA with RF, and 82% and 83% for MDRO (i.e., VRE or CRE or MRSA) with RF. Further, we identified several predictors of MDRO colonization, including long-term care facility stay, current diagnosis of skin/subcutaneous tissue or infectious/parasitic disease, and recent isolation precaution procedures before ICU admission. Conclusion: Our data-driven modeling framework can be used as a clinical decision support tool for timely predictions, characterization and identification of high-risk patients, and selective and timely use of infection control measures in ICUs.


Subject(s)
Drug Resistance, Multiple, Bacterial , Intensive Care Units , Methicillin-Resistant Staphylococcus aureus , Vancomycin-Resistant Enterococci , Electronic Health Records , Humans , Models, Theoretical , Patient Admission
10.
2nd International Conference on Information Systems and Design, ICID 2021 ; 1539 CCIS:323-335, 2022.
Article in English | Scopus | ID: covidwho-1700951

ABSTRACT

The paper analyzes existing empathy methods and offers new approaches so far as of empathy being an important element for design thinking (a Stanford methodology for creative problem-solving) and companies post-COVID era redesign. It comprises an overview of such methods as: VR Technology, VR Empathy Mirror, Dare Dream World Modeling, Fingers Magic, Cosplay, Scenes, and Role games. The paper takes into account different views on the origin of consciousness: molecular biology, neuroscience, pharmacology, quantum information theory, quantum gravity and etc. Many different hypotheses on the related topics and existing approaches are discussed. The article pays attention to issues related to both the opportunities of practical implementation and the moral aspects, possible consequences of the inventions in empathy like a glance on perspective. One's Experimental basis for each of the approaches is provided. After all, understanding of human thinking/feeling is placed at the heart of the global understanding of all vital processes that surround us. © 2022, Springer Nature Switzerland AG.

11.
Life (Basel) ; 11(11)2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1480851

ABSTRACT

Broad-spectrum antibiotics administered to patients with severe COVID-19 pneumonia pose a risk of infection caused by Clostridioides difficile. This risk is reduced mainly by strict hygiene measures and early de-escalation of antibiotic therapy. Recently, oral vancomycin prophylaxis (OVP) has also been discussed. This retrospective study aimed to assess the prevalence of C. difficile in critical COVID-19 patients staying in an intensive care unit of a tertiary hospital department of anesthesiology, resuscitation, and intensive care from November 2020 to May 2021 and the rates of vancomycin-resistant enterococci (VRE) after the introduction of OVP and to compare the data with those from controls in the pre-pandemic period (November 2018 to May 2019). During the COVID-19 pandemic, there was a significant increase in toxigenic C. difficile rates to 12.4% of patients, as compared with 1.6% in controls. The peak rates were noted in February 2021 (25% of patients), immediately followed by initiation of OVP, changes to hygiene precautions, and more rapid de-escalation of antibiotic therapy. Subsequently, toxigenic C. difficile detection rates started to fall. There was a nonsignificant increase in VRE detected in non-gastrointestinal tract samples to 8.9% in the COVID-19 group, as compared to 5.3% in the control group. Molecular analysis confirmed mainly clonal spread of VRE.

12.
Ann Med ; 53(1): 1779-1786, 2021 12.
Article in English | MEDLINE | ID: covidwho-1462157

ABSTRACT

BACKGROUND: An unexpected high prevalence of enterococcal bloodstream infection (BSI) has been observed in critically ill patients with COVID-19 in the intensive care unit (ICU). MATERIALS AND METHODS: The primary objective was to describe the characteristics of ICU-acquired enterococcal BSI in critically ill patients with COVID-19. A secondary objective was to exploratorily assess the predictors of 30-day mortality in critically ill COVID-19 patients with ICU-acquired enterococcal BSI. RESULTS: During the study period, 223 patients with COVID-19 were admitted to COVID-19-dedicated ICUs in our centre. Overall, 51 episodes of enterococcal BSI, occurring in 43 patients, were registered. 29 (56.9%) and 22 (43.1%) BSI were caused by Enterococcus faecalis and Enterococcus faecium, respectively. The cumulative incidence of ICU-acquired enterococcal BSI was of 229 episodes per 1000 ICU admissions (95% mid-p confidence interval [CI] 172-298). Most patients received an empirical therapy with at least one agent showing in vitro activity against the blood isolate (38/43, 88%). The crude 30-day mortality was 42% (18/43) and 57% (4/7) in the entire series and in patients with vancomycin-resistant E. faecium BSI, respectively. The sequential organ failure assessment (SOFA) score showed an independent association with increased mortality (odds ratio 1.32 per one-point increase, with 95% confidence interval 1.04-1.66, p = .021). CONCLUSIONS: The cumulative incidence of enterococcal BSI is high in critically ill patients with COVID-19. Our results suggest a crucial role of the severity of the acute clinical conditions, to which both the underlying viral pneumonia and the enterococcal BSI may contribute, in majorly influencing the outcome.KEY MESSAGESThe cumulative incidence of enterococcal BSI is high in critically ill patients with COVID-19.The crude 30-day mortality of enterococcal BSI in critically ill patients with COVID-19 may be higher than 40%.There could be a crucial role of the severity of the acute clinical conditions, to which both the underlying viral pneumonia and the enterococcal BSI may contribute, in majorly influencing the outcome.


Subject(s)
Bacteremia/epidemiology , COVID-19/epidemiology , Cross Infection/epidemiology , Enterococcus faecalis , Enterococcus faecium , Gram-Positive Bacterial Infections/epidemiology , Mortality , Vancomycin-Resistant Enterococci , Aged , Bacteremia/microbiology , Critical Illness , Female , Gram-Positive Bacterial Infections/microbiology , Humans , Intensive Care Units , Male , Microbial Sensitivity Tests , Middle Aged , Organ Dysfunction Scores , Retrospective Studies , SARS-CoV-2
13.
Microb Drug Resist ; 28(1): 73-80, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1412461

ABSTRACT

Vancomycin-resistant Enterococcus faecium (VREfm) is a globally significant nosocomial pathogen with a rapidly increasing prevalence. The objectives were to investigate VREfm outbreak duration and study the additional impact that infection control bundle strategies (ICBSs) set up to curb coronavirus disease 2019 (COVID-19) spreading had on VREfm outbreaks. Outbreak data set were collected prospectively from April 2, 2014 to August 13, 2020 at Copenhagen University Hospital Bispebjerg, Denmark. All VREfm samples had polymerase chain reaction performed for vanA/vanB genes before whole genome sequencing using the Illumina MiSeq platform. The relatedness of isolates was studied by core genome multilocus sequence typing (cgMLST) using Ridom SeqSphere. Eighty-one outbreaks had a median outbreak duration of 32.5 days (range 5-204 days) and 1,161 VREfm isolates were sequenced. The same cgMLST cluster types reappeared after outbreaks were terminated. When comparing the first 5 months of the COVID-19 pandemic with the corresponding period in 2019, we found a 10-fold decrease in VREfm outbreak patients and median outbreak duration decreased from 56 to 7 days (88%). Several COVID-19 ICBSs were implemented from March 13 through summer 2020. VREfm outbreaks lasted up to 204 days, but our findings suggest that outbreaks might last longer since the same cgMLST persisted in the same wards for years implying an endemic situation with recurrent outbreaks caused by hospital reservoirs or readmittance of unknown VREfm carriers. The sharp decline in VREfm outbreaks during the COVID-19 pandemic was most likely due to the ICBSs, resulting in a decrease in VREfm transmission.


Subject(s)
COVID-19 , Enterococcus faecium/genetics , Pandemics , Quarantine , Streptococcal Infections/epidemiology , Vancomycin Resistance/genetics , Aged , Carrier State/microbiology , Denmark/epidemiology , Enterococcus faecium/drug effects , Female , Hospitalization , Humans , Male , Streptococcal Infections/microbiology , Whole Genome Sequencing
14.
Antibiotics (Basel) ; 10(8)2021 Aug 21.
Article in English | MEDLINE | ID: covidwho-1367766

ABSTRACT

INTRODUCTION: We studied the trend of antimicrobial resistance and consumption at Saint George Hospital University Medical Center (SGHUMC), a tertiary care center in Beirut, Lebanon, with a focus on the SARS-CoV-2 pandemic. MATERIALS AND METHODS: We calculated the isolation density/1000 patient-days (PD) of the most isolated organisms from 1 January 2015-31 December 2020 that included: E. coli (Eco), K. pneumoniae (Kp), P. aeruginosa (Pae), A. baumannii (Ab), S. aureus (Sau), and E. faecium (Efm). We considered March-December 2020 a surrogate of COVID-19. We considered one culture/patient for each antimicrobial susceptibility and excluded Staphylococcus epidermidis, Staphylococcus coagulase-negative, and Corynebacterium species. We analyzed the trends of the overall isolates, the antimicrobial susceptibilities of blood isolates (BSI), difficult-to-treat (DTR) BSI, carbapenem-resistant Enterobacteriaceae (CRE) BSI, and restricted antimicrobial consumption as daily-defined-dose/1000 PD. DTR implies resistance to carbapenems, beta-lactams, fluoroquinolones, and additional antimicrobials where applicable. RESULTS AND DISCUSSION: After applying exclusion criteria, we analyzed 1614 blood cultures out of 8314 cultures. We isolated 85 species, most commonly Eco, at 52%. The isolation density of total BSI in 2020 decreased by 16%: 82 patients were spared from bacteremia, with 13 being DTR. The isolation density of CRE BSI/1000 PD decreased by 64% from 2019 to 2020, while VREfm BSI decreased by 34%. There was a significant decrease of 80% in Ab isolates (p-value < 0.0001). During COVID-19, restricted antimicrobial consumption decreased to 175 DDD/1000 PD (p-value < 0.0001). Total carbapenem consumption persistently decreased by 71.2% from 108DDD/1000 PD in 2015-2019 to 31 DDD/1000 PD in 2020. At SGHUMC, existing epidemics were not worsened by the pandemic. We attribute this to our unique and dynamic collaboration of antimicrobial stewardship, infection prevention and control, and infectious disease consultation.

15.
Antimicrob Resist Infect Control ; 9(1): 154, 2020 09 22.
Article in English | MEDLINE | ID: covidwho-781536

ABSTRACT

BACKGROUND: Currently, hospitals have been forced to divert substantial resources to cope with the ongoing coronavirus disease 2019 (COVID-19) pandemic. It is unclear if this situation will affect long-standing infection prevention practices and impact on healthcare associated infections. Here, we report a nosocomial cluster of vancomycin-resistant enterococci (VRE) that occurred on a COVID-19 dedicated intensive care unit (ICU) despite intensified contact precautions during the current pandemic. Whole genome sequence-based typing (WGS) was used to investigate genetic relatedness of VRE isolates collected from COVID-19 and non-COVID-19 patients during the outbreak and to compare them to environmental VRE samples. METHODS: Five VRE isolated from patients (three clinical and two screening samples) as well as 11 VRE and six vancomycin susceptible Enterococcus faecium (E. faecium) samples from environmental sites underwent WGS during the outbreak investigation. Isolate relatedness was determined using core genome multilocus sequence typing (cgMLST). RESULTS: WGS revealed two genotypic distinct VRE clusters with genetically closely related patient and environmental isolates. The cluster was terminated by enhanced infection control bundle strategies. CONCLUSIONS: Our results illustrate the importance of continued adherence to infection prevention and control measures during the COVID-19 pandemic to prevent VRE transmission and healthcare associated infections.


Subject(s)
Coinfection/drug therapy , Cross Infection/epidemiology , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/epidemiology , Vancomycin-Resistant Enterococci/drug effects , Betacoronavirus , COVID-19 , Coinfection/microbiology , Coronavirus Infections/pathology , Cross Infection/drug therapy , Cross Infection/microbiology , Disease Outbreaks , Genome, Bacterial/genetics , Gram-Positive Bacterial Infections/microbiology , Humans , Infection Control , Intensive Care Units , Multilocus Sequence Typing , Pandemics , Pneumonia, Viral/pathology , Primary Prevention , SARS-CoV-2 , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL